Downloaded viaUNIV OF GEORGIA on March 21, 2023 at 02:19:32 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to |egitimately share published articles.

JOURNAL OF
CHEMICAL INFORMATION
AND MODELING

pubs.acs.org/jcim

EVE

Advances and Challenges in De Novo Drug Design Using Three-
Dimensional Deep Generative Models

Weixin Xie, Fanhao Wang, Yibo Li, Luhua Lai, and Jianfeng Pei*

Cite This: J. Chem. Inf. Model. 2022, 62, 2269-2279

I: I Read Online

ACCESS |

[l Metrics & More |

Article Recommendations |

@ Supporting Information

ABSTRACT: A persistent goal for de novo drug design is to
generate novel chemical compounds with desirable properties in a
labor-, time-, and cost-efficient manner. Deep generative models
provide alternative routes to this goal. Numerous model
architectures and optimization strategies have been explored in
recent years, most of which have been developed to generate two-
dimensional molecular structures. Some generative models aiming
at three-dimensional (3D) molecule generation have also been
proposed, gaining attention for their unique advantages and
potential to directly design drug-like molecules in a target-
conditioning manner. This review highlights current developments
in 3D molecular generative models combined with deep learning
and discusses future directions for de novo drug design.
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B INTRODUCTION

The goal of computational de novo drug design is the rational
discovery of novel and potent drug compounds at a reduced
experimental cost in the validation stage. Traditional structure-
based de novo design methods, one of the key players in this
field, have been developed over decades and their effectiveness
has been demonstrated many times." Recently, generative
models combined with deep learning techniques have gained
increasing attention and injected new vitality into drug
discovery research. Through efficient modeling, deep gen-
erative models accelerate the hit discovery phase by sampling
from and exploring the chemical space of drug-like
compounds.

Chemical structures are commonly described as graphs in
which the atoms and bonds are represented as nodes and
edges, respectively. Simplified molecular input line entry
specification (SMILES), an equivalent string representation
first introduced by Weininger,” can be derived from molecular
graphs. Inspired by the generative performance of recurrent
neural networks (RNNs) in natural language processing,
generative models based on a RNN trained with SMILES
were first developed to sample novel entities from chemical
space,” > followed by graph-based generative models trained
on molecular graphs.”” SMILES- and graph-based generative
models are commonly referred to as two-dimensional (2D)
models, as they produce only topological (or 2D) structures of
molecules without three-dimensional (3D) coordinates. Since
the initial success of 2D generative models, numerous
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generative architectures have been explored and combined
with various optimization strategies to achieve targeted
compound design.®

Many attempts have been made to bias 2D generative
models toward the design of molecules that are likely to
interact with target proteins using either ligand- or receptor-
based approaches. However, due to the nature of 2D molecular
representations, encoding atomic interactions between a ligand
and the protein binding site during the generation process can
be challenging. Usually, researchers resort to taking advantages
of known actives for the protein target. For example, many
studies have employed transfer learning by fine-tuning the
generative model with known actives to force the model to
focus on related regions in chemical space.””'’ Techniques
such as beam search sampling have been used to enhance the
prioritization and selection of promising candidates in this
process.'’ Some approaches use known actives for the tar§et
receptor to initiate searches in the latent chemical space.'”"?
Others build quantitative structure—activity relationship
models from these known actives and use them as a reward
function in reinforcement learning to optimize the generative
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Figure 1. Cubic grid-based molecular representation. The antagonist ZM24138S of the human adenosine A2A receptor, taken from the PDB entry
3EML, is used for illustration purposes. (a) Atoms with the same pharmacophoric properties are assigned to a separate channel and are enclosed by
a cubic box of a standard size. The pharmacophore here is identified by RDKit. (b) The value of each voxel is determined by all the atoms included
in the channel and is most affected by the nearest atom. Here, the hydrogen-bond-acceptor channel is used as an example.

models.'* ' These methods are known as ligand-based
approaches, as they rely on the availability of compounds
with validated bioactivity. By contrast, some studies have
alleviated the necessity of obtaining known actives beforehand
by developing receptor-based approaches. These methods
condition molecular generative models on protein-related
information, such as amino acid sequences,17 the Coulomb
matrix of protein pockets,'® and pharmacophoric con-
straints.'”*® Although some of these approaches are con-
ditioned on 3D structures of the receptors, they still generate
molecules in SMILES or graph forms. These advances have
been comprehensively reviewed before.”"*

To obtain a 3D conformer of a generated molecule, it is
effective to combine 2D generative models with conformation
generation modules to embed it into 3D space or predict its
binding pose in the protein pocket.'”** It seems there is no
need to develop a 3D generative model. However, a major
distinction between 3D generative and conformation gen-
eration models is that 3D generative models produce
topological and conformational structures simultaneously,
whereas a conformation generation model generates a
conformer based on a known molecular graph. Although 3D
generative models are harder to train, they possess some
unique advantages, which are elaborated in the next paragraph.
The potential for deep learning applications in 3D generative
modeling is also of interest. Thus, this review focuses on 3D
generative models that directly produce 3D molecular
structures.

Representing a molecule using its 3D conformer is a natural
approach that has been widely adopted by computational
structure-based drug design (SBDD) programs, such as
LigBuilder,”* ™ before the recent rise of deep learning
methods. Representing molecules in 3D space and developing
a 3D generative model have multiple advantages. First, 3D
generative models are better suited for receptor (structure)-
based drug design. Unlike a 2D molecular graph, which is a
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simplified representation to describe molecular structures,
molecules with 3D conformation allow consideration of intra-
and intermolecular interactions during the generation process.
More importantly, all local interaction constraints from the
protein pocket can be incorporated into the iterative
generation of a molecule, which mimics the processes applied
by human experts during the structure-based optimization
process. Second, the generalizability of 3D generative models is
not limited by the sparsity or absence of known ligands that
bind to the target protein because design knowledge obtained
from other proteins can be transferred to new targets. This
meets the requirement of de novo drug design, and the novelty
of generated molecules may be less restricted than those based
on known actives. Last, 3D molecular generative models may
achieve a higher level of automation with less human
interference. Currently, to evaluate the binding probability,
molecules produced by most 2D generative models are first
embedded in a 3D space and docked into the binding sites of
the protein. Then, the binding modes and scores are analyzed
to decide whether the important atomic interaction is
recovered. However, choosing suitable embedding algorithms
and docking programs can be tricky, especially when deep
learning-based methods come into play.””** The ideal
approach is a 3D generative model that is able to combine
these processes end-to-end to produce reasonable binding
poses.

The present paper provides a comprehensive review of
recently reported 3D molecular generative models. We first
introduce current techniques for 3D molecular structure
generation and categorize them into three types, depending
on the featurization methods. Then, we provide an overview of
the performances of these models when generating in free
space or conditioned on the binding sites of the protein targets.
Finally, we discuss the unsolved issues and challenges in this
field and how they may be addressed in the future.

https://doi.org/10.1021/acs.jcim.2c00042
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Figure 2. Generation using cubic grid-based molecular representation. To sample a 3D molecule, a generative model first produces the
corresponding cubic grids of all channels. Then, these cubic grids are used to infer the exact molecular structures by other postprocessing modules,

such as a captioning network or an atom-fitting algorithm.

B FEATURIZATION METHODS OF 3D DEEP
GENERATIVE MODELS

We categorize the featurization of 3D molecular structures into
three types: cubic grid-based, Euclidean distance matrix
(EDM)-based, and Cartesian coordinate-based. Each type of
featurization requires distinct generative architectures and
optimization strategies.

Cubic Grid-Based Molecular Featurization. Represent-
ing molecular structures as cubic grids has been successfully
exploited in related areas, such as the design of protein—ligand
scoring functions” and the detection of protein druggable
binding sites.”” The popularity of this method arises from its
compatibility with convolutional neural networks, which
enables automatic feature extraction and is supported by
major advances in computer vision. The ability of small
molecules and macro-molecules, such as proteins, to pass
through a similar featurization process is also desirable.

The cubic grid representation usually contains several
channels, which are analogous to the RGB channels of raster
images. These channels are concatenated into a four-dimen-
sional tensor as the direct input for a neural network. Each
channel spans a separate cubic grid and focuses on one of the
atomic properties, including occupancy (whether it is a
nonhydrogen/heavy atom or not) and pharmacophoric
properties, such as hydrophobicity, aromaticity, hydrogen-
bond acceptor or donor, ionizability, and metallicity. Each
atom is assigned to a channel if it has the given property,
according to its type and a predefined rule (Figure la).
Therefore, only atoms with the desired property are considered
in each channel, while all heavy atoms are included in the
occupancy channel.

Next, the molecule is voxelized into discretized cubic grids
centered around it. The value at each grid point, or voxel, in
each channel is determined by an atomic smearing function,
which quantitatively defines the influence each atom has on its
surrounding voxels. Generally, an atomic smearing function
depends on atomic radius and assigns a larger influence value
to voxels closer to any atom, exemplified by previously
explored pair correlation functions’® and Gaussian-like
densities.”*> The resulting value at each voxel is the
summation or maximum of all influences exerted upon it by
every atom in the channel (Figure 1b).

The voxelized molecular structure is in a natural input form
for convolutional blocks. Previous work has explored several
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generative architectures with convolutional layers, including
convolutional neural networks (CNNs),>® autoencoders
(AEs),”" variational autoencoders (VAEs),”"**** and gener-
ative adversarial networks (GANs).*> Generators take
voxelized protein binding sites or latent variables encoded
from ligand grids as input and sample new binders in a 3D grid
form (Figure 2).

An additional optimization step is needed because the
transformation between the original molecular structure and
the cubic grid representation is not invertible. Generally, when
a molecule is converted to its cubic grid form, information such
as atom types and the exact positions of atoms and bonds are
lost, making it impossible to directly reconstruct the original
structure. Therefore, when a molecule in cubic grid form is
sampled by a generator, determining the corresponding
structure is a nontrivial task. Some studies have attempted to
train an RNN to parse the sampled cubic grids into
SMILES.**** Others have tried to fit specific atoms into the
generated grid using additional optimization algorithms,”"**
but only obtained atom types and atomic positions, whereas
bond information required inference using other programs,
such as OpenBabelg'6 (Figure 2).

EDM-Based Molecular Featurization. The second type
of representation describes a molecular structure by its atomic
type vector/matrix and its EDM. A bond matrix accounting for
the connectivity of atoms and bond orders is also sometimes
included. To circumvent the permutation problem, EDM-
based approaches are constrained to fixed chemical composi-
tions or use a specific ordering, such as the InChl-based
canonical labeling.

A key requirement of EDM-based featurization is ensuring
that the EDM sampled by the generator is in a reasonable
form, which requires the application of additional constraints
during the training process. The Gram matrix of the EDM is
forced to be positive semidefinite, which requires the
eigenvalues of the Gram matrix to be non-negative, and the
matrix must have a rank of 3 because the atomic coordinates
exist in a maximally three-dimensional embedding. However,
applying these constraints is nontrivial in practice because the
EDM directly sampled by the model at the beginning of
training may be unfavorable for backpropagation through
eigenvalue decomposition, making model updates problematic.
To address these issues, Hoffmann et al. have proposed a novel
reparameterization scheme using a non-negative function to

https://doi.org/10.1021/acs.jcim.2c00042
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Figure 3. Generation using EDM-based molecular representation. Multiple matrices encoding molecular structures are first sampled by a generative
model. Then, the atomic types and coordinates are constructed from the nuclear charge matrix and distance matrix, respectively. The connectivity
of the atoms is completed by the bond matrix or other toolkits, such as OpenBabel.

transform the outputs of the model into a positive semidefinite
Gram matrix and then a valid EDM.*’

To construct molecular structures from multiple sampled
matrices, the EDM must be converted into the three-
dimensional coordinates of the atoms. A multidimensional
scaling algorithm is usually adopted for this purpose. Software
such as OpenBabel®® is then used to infer connectivity if the
EDM-based representations do not contain the bond
information and add hydrogen atoms if the molecule has
undergone hydrogen removal (Figure 3).

Cartesian Coordinate-Based Molecular Featurization.
The third type of method directly samples molecular structures
embedded in 3D space, which is very different from the two
featurization methods mentioned above. Cartesian coordinate-
based representation contains the element type and Cartesian
coordinates for each atom in the compound. Generators
construct molecular structures in an autoregressive manner, by
adding atoms to the partial structures one-by-one.”*™* Some
work also attempt to sample the entire structure in a single
step.43

Building such a model is not straightforward. When the
molecular structure is rotated by a certain degree, the
generator should place the next atom at a correspondingly
rotated position, such that generation process is covariant to
spatial transformation. Therefore, special attention should be
paid to two aspects of the generative model when using
Cartesian coordinate-based representation.

The first is how to obtain a rotation-, translation-, and
permutation-invariant or covariant state embedding that
encodes an abstract understanding of the current state.
Invariant state embedding is necessary to determine actions
invariant to transformation, such as the selection of the next
atom type, in addition to covariant state embedding to
determine where to place the next atom. A handful of works
have based their generative models on SchNet,**** a deep
learning architecture consisting of continuous-filter convolu-
tional layers and originally designed for predicting molecular
properties with leading accuracy. The SchNet module
produces an invariant embedding for each atom that captures

2272

information regarding distances from neighboring
atoms.”® **** Recently, Li et al.*® devised a novel state
embedding layer by extending a massage passing neural
network with an internal coordinate system to obtain an
invariant embedding. Others used different covariant embed-
ding modules, such as the E(n) transformation equivariant
graph neural network variants*’ or models based on spherical
harmonics.*'

The second aspect to be aware of is the policy for
constructing molecular structures. Assembling a molecular
structure involves multiple events, such as focusing on a placed
atom and choosing the next atom type, and each event requires
a concrete policy. The positional policy, which determines
where to place the next atom based on the current situation,
requires special attention. An invariant state embedding
requires an invariant positional policy, and a covariant state
embedding requires a covariant one. Information regarding
changes in the orientation of a molecule cannot propagate
through an invariant state embedding module; therefore, a new
atom is unlikely to be placed accordingly. The major difference
between approaches also lies in the positional policy. When a
state embedding is obtained with SchNet,****** an invariant
positional policy introduced by Gebauer et al.”* can be applied,
which predicts the pairwise distances between the next atom
and all preceding atoms and then constructs a distribution of
candidate locations on a small grid centered around the focal
atom prior to the placement of the next atom. In addition to
this approach, Simm et al.*” have modeled the position of an
atom using internal coordinates that are invariant to rotation
and translation based on a combination of bond length, bond
angle, and torsion angle. Equipped with a novel embedding
module, Li et al.*® assembled molecular structures in 3D space
equivariantly by predicting the internal coordinates of each
atom. For covariant state embedding, Simm et al.*' have used
the local coordinates (d, 6, ¢) to locate an atom, where d is the
distance between the focal atom and the next atom and (6, ¢)
is the orientation on a unit sphere around the focal atom.
Others researchers have forced this requirement for covariance
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Figure 4. Generation using Cartesian coordinate-based molecular representation. A molecule could either be (a) assembled sequentially by placing
atoms in an autoregressive way or (b) decoded from a latent space in one shot. The connectivity between atoms is sometimes absent and requires

further inference.

through an equivariant function parametrized by neural
networks. "’

Instead of obtaining the entire molecular structure at the end
of the generation process, sometimes bonds must be inferred
from the atom types and the 3D coordinates outputted by the
generator (Figure 4).

B 3D DEEP GENERATIVE MODELS AND THEIR
APPLICATIONS

This section provides an overview of current 3D molecular
generative models, including their model architectures, training
data, and model performance. We divided these methods into
two types depending on whether they are more suitable for
ligand-based or protein structure-based design. Moreover,
because no specialized benchmark exists for 3D generative
models, training data were collected from various sources, and
3D conformers were generated by different methods with
varying levels of precision. Some data were provided by data
set maintenance teams, such as the QM9 data set, whereas
others were generated by researchers with chemoinformatic
toolkits, like RDKit"” or OpenBabel.”® The data sets used and
the detailed results of each work reviewed below can be found
in Table S1.

For Ligand-Based Design. Cubic Grid or EDM-Based.
Case 1. Skalic et al.>* have proposed a pharmacophore-based
generative model utilizing 3D molecular shapes. Molecules
were voxelized into a discretized cubic grid with five channels:
hydrophobicity, aromaticity, hydrogen-bond donors, hydro-
gen-bond acceptors, and heavy atoms (occupancy). Corre-
sponding compound pharmacophores were similarly featurized
using only three property channels: hydrogen-bond donors,
hydrogen-bond acceptors, and aromatic ring centers. Their
model consisted of a shape VAE using 3D convolutional layers
that autoencodes the molecules conditioned on the pharma-
cophore features and a shape captioning network that parsed
the molecular shape sampled by the shape VAE into a SMILES
string. The model was trained on drug-like compounds from
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the ZINC1S5 database, whose 3D conformers were generated
via RDKit.

The authors reported a reconstruction rate of 1.74%, with an
overall validity of 99.5% when seed molecules from the test set
were used to generate latent vectors. They also benchmarked
their unconditional version (without the pharmacophore
location) of the model on the MOSES* platform and
achieved performance comparable to other published methods.
When tasked with identifying molecules analogous to known
binders (used as seed structures) of three pharmaceutical
targets, adenosine A2A receptor, thrombin, and stem cell
growth factor receptor (KIT), their model tended to propose
larger structural modifications relative to the seed structures
than Chemical VAE,"” a SMILES-based method. This
difference may be due to the similarity between the cubic
grid representation of 3D molecules and the pharmacophore
model, and generated molecules decoded from that repre-
sentation may introduce more structural variations. However,
the molecules generated by their model still retained drug-like
properties and had higher shape similarity to known binders
than random samples from ZINC1S. The binding affinities or
probabilities of the generated molecules were evaluated by two
virtual screening tools and were consistently higher than those
of the corresponding decoys from the DUD-E database.”
Therefore, their model was believed to have good potential for
lead discovery. However, none of the generated compounds
have been validated experimentally.

Case 2. Ragoza et al.”" have transformed molecules from the
MolPort database into 3D grids prior to training a VAE with
convolutional blocks, followed by an adversarial discriminative
network. This method was evaluated using a test set collected
from the PubChem database. To address the issue of structural
inference, they devised an optimization algorithm that fits a set
of atoms into the sampled 3D grid with beam search and
gradient descent. Their approach was validated by reconstruct-
ing molecular structures from the real 3D grids of the test
molecules, achieving an overall validity of 99% and an average
root-mean-square deviation (RMSD) of 0.011 A for those that
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successfully recovered the exact atom types. When the 3D
grids of the test molecules from AE posterior and VAE
posterior were used, the validity dropped to 92% and 91%,
with average Tanimoto similarities between the recovered
molecules and the inputted ones of 0.43 and 0.24 and mean
quantitative estimate of drug-likeness (QED) values of 0.49
and 0.43, respectively. When sampling molecules from the
VAE prior distribution, they reported validity of 91% and
significantly smaller sizes for the sampled molecules, with a
mean QED of 0.38. Furthermore, shape continuity was found
when exploring and interpolating in the latent space.

Case 3. Hoffmann et al.*” have introduced EDMnet, which
utilizes the second type of representation of 3D molecules. The
authors trained EDMnet as Wasserstein GANs with a gradient
penalty in a multitask fashion on 6095 isomers with the
chemical formula C,0,H;, collected from the QM9 data set to
generate molecules in the form of an atom type vector and an
EDM. Their model captured atomic pairwise distance
distributions, except for the O—O pair. After using OpenBabel
to add bonds and removing the invalid structures, the authors
reported a validity of 7.5% and a uniqueness rate for
cannonical SMILES of 1—2%, which may imply mode collapse.
The authors demonstrated the ability of the model to sample
diverse conformers for new isomers (338 out of nearly 4000
valid samples). They also found the total energies of the
relaxed structures were close to those of the molecules from
the QM9 data set. However, the stability of the new
conformers before relaxation was uncertain.

Case 4. Nesterov et al,, the authors of 3DMolNet,”" have
represented molecules with hydrogens removed as a
concatenation of nuclear charge matrix, EDM, and bond
order matrix. The 3DMolNet adopted the architecture of VAE
and was trained on molecules from the QM9 data set. The
model achieved a high reconstruction accuracy on the test set,
with median RMSDs of 0.048 and 0.16 A for heavy and full
atoms, respectively. A smooth transition was observed when
interpolating in the latent space, especially between structurally
similar molecules consisting of different chemical composi-
tions. The intermediate structures were also found to be close
to their relaxed ones. Moreover, over 20,000 structures
sampled from the latent space were found to be novel isomers
not contained in the QM9 data set, showing the ability of
3DMolNet to discover novel molecules.

Cartesian Coordinate-Based. Case 1. Gebauer et al.** have
proposed an adapted SchNet generative architecture combined
with a rotation and translation invariant position sampling
policy to construct molecular structures through sequential
generation. The model was trained on the equilibrium
geometries of 6095 constitutional isomers of C,0,H;, from
the QM9 data set. They reported 4392 unique molecules out
of 10000 generated structures, and hundreds of molecules
resembled unseen samples in the test set. Furthermore, 20
generated structures with low predicted potential energy were
close to the equilibrium configurations, with median RMSDs of
0.2 and 0.36 A for heavy atoms and all atoms, respectively,
comparing before and after relaxation.

Case 2. In another work, Gebauer et al.>’ have used a similar
generative pipeline, G-SchNet.”® The major difference between
their two studies was the introduction of two auxiliary tokens,
the origin token and the focus token, which label the positions
of the center of mass of the generated molecule and the current
focal atom, respectively. The training data included 50,000
molecules randomly selected from the QM9 data set. After the
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generation of molecules was complete, they used OpenBabel*®

to add bonds for the chemical valency check.

Among the 20,000 molecules generated, 77% of them were
valid, 87% were novel, and 92% were unique. The radial
distributions for pairs of atoms and the angular distributions
for bonded triplets were properly reproduced, and the averaged
counts of atoms, bonds, and rings per molecule were also close
to those of the training data. They generated 3D structures
aligned well with their relaxed states, obtained by energy
minimization, with a median RMSD of 0.25 A. The authors
successfully biased the generated distribution of highest
occupied molecule orbital-lowest occupied molecule orbital
gaps toward smaller value regions through transfer learning
using the generative model.

Joshi et al.** have proposed a generative model largely based
on G-SchNet. The major difference from the previous work
was the use of a given scaffold to initiate the generation
process. Their model was applied to lead optimization tasks for
two enzymes of the SARS-CoV-2, the main protease (Mpro)
and endoribonuclease (NSP15). Starting from the scaffolds of
common electrophilic warheads or bioactive compounds, their
model generated molecules with good binding affinity,
supported by docking simulations. However, the representative
generated structures showed high similarity to a known
inhibitor of the NSP15. The bioactivity of the generated
molecules against the SARS-CoV-2 enzymes also requires
further experimental confirmation.

Case 3. Simm et al.*’ have considered the molecular
generation task as a sequential decision-making problem, in
which atoms are drawn from a bag of given atoms and placed
one by one onto the 3D canvas. They employed SchNet to
produce an invariant state embedding of the current
configuration and used internal coordinates to specify the
relative atomic positions. The sampling policy was iteratively
updated through a proximal policy optimization reinforcement
learning algorithm. The reward that the agent received was
formulated as the negative difference in energy before and after
the new atom was placed on the canvas, which encouraged the
design of stable molecules.

When given a single atoms bag or multiple atoms bags that
required the agent to construct several molecules simulta-
neously, their model was able to construct diverse 3D
structures with a validity of 60%—90% and find nearly stable
configurations at the end of the exploration phase. Generally,
the agent performed worse when more heavy atoms or element
types were included in the bag of given atoms. The model was
also evaluated on a solvation task, in which water molecules
were generated in the vicinity of a solute. The agent managed
to arrange water molecules to allow them to form hydrogen
bonds with the solute. Moreover, the agent could generalize to
unseen bags of atoms of the same size or a larger size by
applying transfer learning,

Case 4. Similar to their previous reinforcement learning
pipeline generating molecules on a 3D canvas, Simm et al.*’
have presented a rotation-covariant generative model that
specifies the bond length and orientation relative to the focal
atom when placing a new atom, which addressed the ambiguity
of using internal coordinates. They employed CORMORANT,
a neural network architecture that predicts the properties of a
chemical system and works in the representation of the SO(3)
group, to obtain both invariant and covariant state embeddings
for the structures being generated. To alleviate the constraint
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of a fixed chemical formula, they allowed the model to
assemble molecular structures from a stochastic bag of atoms.

The model showed superior stability for the final molecular
structures and the training process compared with their
previous internal coordinates-based model, especially when
building highly symmetric molecules, such as SOF,. They also
reported that the generated molecules had better average
validity, diversity, and stability than the baseline over different
generation tasks. However, this model yielded large RMSDs in
the task using a larger bag containing more heavy atoms and a
more complex constitution.

Case 5. Satorras et al.** have proposed a probabilistic model
obeying Euclidean symmetry based on continuous-time
normalizing flows, which was applied to 3D molecular
generation by sampling the atom types, charges and Cartesian
coordinates in parallel. Specifically, they utilized E(n)
equivariant graph neural networks, a neural architecture that
is E(n) equivariant and enables invertible transformation, to
model the dynamics function and enforce additional trans-
lation invariance. In the context of molecular generation, the
charge and atom type were converted to the continuous form,
and the size of the molecule was determined prior to the
sampling of structures.

The model was trained on molecules from the QM9 data
set. Compared with the nonequivariant variants, this model
generalized well to unseen samples in the test set with a much
lower negative log likelihood. However, the validity or “mol
stability” of the structures generated was only 4.2%.

For Protein Structure-Based Design. Case 1. Skalic et
al.*® have introduced LigVoxel, a 3D convolutional neural
network, which takes as inputs 3D grid representations of
protein pockets to predict binding ligand grids. Their model
could further depend on the amounts of the different
pharmacophoric features required. The training set was 8808
protein—ligand complex structures curated from the 2013
release of the sc-PDB database.”” One of the shortcomings of
their approach is the failure to infer the molecular structures
from the predicted grids, which limited their evaluation
procedures to the grid-level.

When evaluated on the complexes in the test set, their model
could predict ligand grids in the protein binding sites with
better volumetric overlap with known binders than those from
random baseline and a molecular interaction fields method.
Their model also demonstrated virtual screening capability to
recover close-to-crystal poses of the real binders using the
predicted grids via their screening pipeline. Although the
generated grids showed some similarity to those of known
binders, the performance in designing novel ligands was not
specified; therefore, the effectiveness of this model in de novo
design scenarios remains unclear.

Case 2. Partially to extend their previous approach,” Skalic
et al.>® further proposed LiGANN, another structure-based
ligand design pipeline. It contained a BicycleGAN with 3D
convolutional blocks for generating proper ligand grids given
the pocket grids and a shape captioning network, similar to
that in their generative model in free space,’® to parse the 3D
ligand grids into SMILES strings. The model was trained on
top-ranking redocked poses of 11,256 binding compounds
from the DUD-E database. The binders were transformed into
3D grids with five channels, including hydrophobicity,
aromaticity, hydrogen-bond donors, hydrogen-bond acceptors,
and heavy atoms, whereas the pockets were featurized similarly
with two additional channels: positive and negative Gasteiger
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partial charge. The independent test set consisted of three
pharmaceutically interested targets: the delta opioid receptor
(7TM) and two serine/threonine-protein kinases Chkl and
TNNI3K.

Compared with Ligvoxel,” their model generated more
diverse and distinguishable shapes from the target pockets. For
the three test proteins, they reported a success rate of 86.5%—
93.8% when decoding SMILES strings from the ligand shapes.
The distributions of the different property counts of the
compounds inferred from their shapes were in good agreement
with those of the recorded binders. To evaluate the binding
probability of the generated molecules, the authors used both
structure-based and ligand-based virtual screening methods.
For the three test proteins, the generated molecules were
docked into the protein pocket with smina.”® The docking
performance of the generated molecules was superior to that of
decoy compounds randomly selected from the ZINC1S
database. For another 31 targets from the DUD-E database,
the authors used a LightGBM gradient boosting decision tree
model for ligand-based virtual screening. Significant enrich-
ment in the generated molecules relative to the decoys was
found in the top predicted pKy decile, with an enrichment
factor between 1.5 and 1.9. Some examples of generated
ligands for the adenosine receptor A2 were shown to have a
similar scaffold as known binders. However, none of the
binding candidates were experimentally validated.

Case 3. Ragoza et al.”” have proposed a conditional VAE
model combined with 3D convolutional layers to generate
ligands in protein binding sites. Similar to the authors’ previous
approach,”’ molecules were voxelized into 3D grids with six
property channels. The latent codes encoded from the
protein—ligand complexes, together with the conditional labels
encoded from the receptors alone, were provided to the
decoder to generate 3D ligand grids. The ligand grids were
then converted into molecular structures through atom-fitting
and bond inference algorithms. The whole model was trained
on the CrossDocked2020 data set and evaluated on 10
complex structures reserved for testing.

Two sampling modes from the latent space, posterior
sampling and prior sampling, were tested. These modes
differed according to whether the latent code was obtained
from a real protein—ligand complex or a standard normal
distribution. For posterior sampling, a validity of 98.5%, a
novelty of 100%, and a uniqueness of 77% were obtained for
the generated molecules. Posterior molecules were also quite
dissimilar from the reference molecules (from the encoded
complexes), with an average Tanimoto fingerprint similarity of
0.33. For prior sampling, the authors reported much higher
uniqueness and dissimilarity (in both molecular fingerprint and
3D shape) for the generated samples relative to the reference
molecules. A detailed comparison is provided in Table S1. The
molecular weight distributions for the two sampling modes had
a large overlap, with medians <300, but these were not directly
compared with the distribution of the reference molecules.
Concerning the quality of the 3D conformation, 81% and 91%
of the conformational changes measured by RMSD were <2 A
during the universal force field (UFF) minimization. The
authors also reported the distributions of some common bond
lengths, bond angles and torsion angles. However, all of these
geometric properties were measured after the generated
molecules completed UFF minimization, and the performance
before minimization is unknown. To assess the relative stability
of the generated molecules in the receptor binding site, the

https://doi.org/10.1021/acs.jcim.2c00042
J. Chem. Inf. Model. 2022, 62, 2269—2279


https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.2c00042/suppl_file/ci2c00042_si_001.pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c00042?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Information and Modeling

REVIEY

pubs.acs.org/jcim

molecules were docked into the pockets using Vina, and the
binding affinity was additionally predicted by an ensemble of
CNN scoring functions. For molecules from posterior and
prior sampling, 30.8% and 17.3% had lower minimized Vina
energy, and 15.4% and 15.9% had greater predicted affinity
than the reference molecules, respectively. Unfortunately,
detailed performance across the 10 tested targets was not
reported.

Interestingly, the authors tested the generation performance
during conditioning on the mutated Shikimate kinase from
Mycobacterium tuberculosis. They created 19 single-residue
mutants, including known interacting and noninteracting
residues, and four multiresidue mutants. Compared with the
reference binder, the generated molecules showed reasonable
changes in response to the mutated pocket environment.
However, the authors also observed some discrepancies in the
structural similarity and changes in binding potential with
respect to the known binders. In addition, the representative
generated molecules showed in this work were quite small,
likely due to the CrossDocked2020 data set they used.

Case 4. Our group (Li et al)* has introduced a novel
model architecture, L-Net, to perform both unconditional and
structure-based molecular design. Molecules with conforma-
tion information were processed by a state encoder consisting
of mainly graph convolutional layers organized into a U-Net
structure. The continuous representation outputted by the
state encoder was used by a subsequent policy network to
perform several types of edits on partially completed molecular
structures. Because of the introduction of an internal
coordinate system, L-Net can generate 3D molecules
regardless of positional or orientational variation.

After being trained on drug-like compounds from the
ChEMBL data set, L-Net achieved a validity of 94.3%, whereas
this value for a test set from on the QM9 data set was 96%.
The uniqueness of generated molecules approached 100%.
Other molecular property distributions such as QED,
molecular weight, and 3D shape also agreed with those of
the molecules in the test set. After optimization with the
MMFF94s force field, we reported an average RMSD value of
0.613 A, which shows the high quality of the generated
conformers. We also found close matches between the bond
lengths, bond angles, and torsion angles of various sub-
structures in generated molecules and those in the test set. The
imperfections in the ring structures generated were also
discussed.

To design molecules inside target binding sites using L-Net,
we developed DeepLigBuilder, which combined our model
with a Monte Carlo tree search (MCTS) with the docking
score from smina as the reward. DeepLigBuilder was evaluated
for the task of designing potential inhibitors for SARS-CoV-2
MPro. Starting from a seed fragment of a validated potent
nonpeptide inhibitor that covalently binds SARS-CoV-2 MPro,
DeepLigBuilder found novel, drug-like, and synthetically
accessible molecules with improved docking scores compared
with the original inhibitor. We also found that three key
pharmacophoric features were properly captured, indicating a
similar binding mode with the seed inhibitor.

We have also demonstrated the ability of DeepLigBuilder to
design noncovalent inhibitors targeting SARS-CoV-2 MPro. A
small fragment containing three heavy atoms in a newly
reported noncovalent inhibitor was used as a starting point.
DeepLigBuilder generated compounds with high affinity scores
(i.e., smina score lower than —9 kcal mol™) with a success rate
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of 78.1%. The average QED of these generated molecules
improved from 0.36 for the original inhibitor to 0.53, whereas
the synthetic accessibility score of 2.7 was maintained.
Similarly, three important pharmacophoric features were
inspected and found to be covered well by the generated
molecules. Bemis—Murcko scaffolds analysis showed that
DeepLigBuilder could generate molecules with the privileged
structural patterns found in the original inhibitor.

Challenges and Prospects. Structural Inference. Three
types of featurization and representation of 3D molecules have
been established. Room remains for the improvement and
development of new representations. In the work mentioned
above, the generative model learns to assemble a 3D molecule
either atom-by-atom or in one shot. When the connectivity of
atoms is absent from the learning process, the direct output of
the model is a set of discrete atoms, and structural inference is
needed before further evaluation, which is the current state of
most 3D generative models. However, reliable structural
inference is still an open question and most studies have
resorted to suboptimal solutions with obvious limitations. For
example, a captioning network is useful for parsing the sampled
ligand grids into SMILES strings, but aligning each
substructure in the decoded molecule with the original grid
is challenging.’*”> Other optimization algorithms can be used
to fit a set of atoms into the ligand grids.31 Toolkits, such as
OpenBabel,’® or rule-based methods using empirical bond
lengths*’ have also been widely used in EDM- and Cartesian
coordinate-based models for bonds completion. However,
these approaches do not guarantee a 100% success rate, even
when reconstructing real molecules from collections of discrete
atoms or grid points.

Several methods may exist to address this urgent issue. First,
new evaluation methods can be established to verify the
chemical validity of generated molecules without relying on
knowledge of bond information, which is a prerequisite for
toolkits like RDKit. Second, new invertible representations of
3D molecules can be developed. For example, bond
information can be explicitly encoded with the adjacency
matrix, as Nesterov et al. did in 3DMolNet,*" or an additional
"bond channel” can be used for 3D grid representation. Third,
directly handling molecules with 3D coordinates is another
promising method for 3D molecular generation, exemplified by
L-Net, which combines a graph neural network with a local
coordinate system.*

Application to Protein Structure-Based Drug Design.
Unlike SMILES-based or graph-based representations of a
compound, the 3D structure is a more realistic physical model
from which properties, such as intrinsic energy, can be derived.
The use of a 3D molecule representation also allows
consideration of the intermolecule interactions and binding
affinity of the compound in complex with biological targets,
which is the basis of SBDD. Therefore, when a generative
model utilizing 3D molecular representation is used to perform
SBDD, it benefits from not only the knowledge provided by
known actives, which most SMILES-based or graph-based
generative models rely on, but also the general binding rules of
protein—ligand complexes.

The most important goal for 3D molecular generative
models is the design of ligands that bind to specific targets,
which is the reason for using a more challenging method
instead of combining a SMILES- or graph-based model with
conformation generation modules. However, most of the 3D
molecular generative models reviewed above design com-

https://doi.org/10.1021/acs.jcim.2c00042
J. Chem. Inf. Model. 2022, 62, 2269—2279


pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c00042?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Information and Modeling

REVIEY

pubs.acs.org/jcim

pounds in free space; only a few have tried to generate
compounds in the target binding sites. Nonetheless, lessons
can be learned from these early stage explorations which can be
summarized into two plausible approaches to do SBDD with a
3D molecular generative model. The first approach uses
supervised learning and builds a model conditioned on protein
pockets. The works by Skalic et al.>>** and Ragoza et al.** fall
into this category. However, their models require further
structural inference, and the novel compounds generated
require experimental validation.

The other approach to do SBDD with a 3D molecular
generative model is to use reinforcement learning (RL), which
does not require the preparation of a complex structure data
set. The reward in RL training can be chosen from well-
developed scoring functions to bias structure generation
toward the desired targets, such as the estimated affinity
score from smina or descriptor-based scoring functions
boosted with deep learning algorithms. We have discussed
some early efforts in this direction. Simm et al***' have
trained a 3D generative model from scratch, receiving rewards
from the stability of the molecular system evaluated by the
semiempirical parametrized method 6, which could be replaced
by a scoring function to provide a target-related reward for
conditional generation. Our previous work*® showed the
effectiveness of biasing an unconditional 3D generative model
toward specific targets through fine-tuning with MCTS.

Evaluation and Benchmarks. There is no unified and
comprehensive benchmark for 3D molecule generative models.
Researchers have evaluated the performances of their models
and the quality of the generated molecules using many metrics,
largely depending on the molecular representation. For
example, LigVoxel‘?’3 generated ligands in grid form, which
limited its evaluation to the grid-level. The training data were
curated from various sources (see Table S1 for data set
summary); 3D conformers with the precision level of quantum
chemistry were used in some work, whereas conformers
generated by heuristic methods were used in others. Different
receptors were chosen as targets when generating potential
ligands in protein-binding sites. All of these discrepancies
create difficulty in directly comparing any two models.

The evaluation of 3D generative models could follow the
benchmarks for SMILES or graph-based generative models,
such as MOSES* and GaucaMol,* for better comparison of
2D and 3D models. However, emphasis should be placed on
the 3D aspects.

On the one hand, quality assessments of generated 3D
conformers are important and may include comparisons of the
distributions of bond lengths, bond angles, and torsion angles
with those of the molecules from the test set. Many studies
report the median RMSD of conformation changes after the
generated molecules are optimized by molecular force fields,
such as MMFF94.”> However, reporting energy changes would
represent a more rigorous assessment, as RMSD may
underestimate, for example, an unnatural bond length, which
should be penalized for high energy. This approach is also
adopted by most advanced studies of molecular conformation
generation to directly assess the quality of the generated
conformations.*®

On the other hand, a 3D generative model that produces
diverse conformers is more desirable and more generalizable,
which is often omitted by most 3D generative models.
Currently, these models are trained to produce stable
conformations of molecules, which allows them to learn the
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rules of stereochemistry, but they may perform poorly when
conformational transition is needed, as is observed when
molecules are sampled from a trained latent space intended to
encode both topological and conformational information.***’

The generation of diverse conformers by 3D generative
models, especially those conditioned on receptor structures, is
necessary to allow these models to be generalized to different
target receptors. It is because ligands typically adopt different
conformations to bind different rece}z)tors, which is also
essential for multitarget ligand design. ¢ Moreover, ligands
tend to reorganize their conformations upon binding, deviating
from global or local minimum conformations.>® This behavior
also requires that 3D generative models have sufficient capacity
to produce appropriate conformers.

Finally, a complete evaluation procedure should include the
validation of generated binders by wet-lab experiments. None
of the molecules obtained from current 3D generative models
have been tested in experiments, partly because the generative
models tend to produce molecules with low synthetic
accessibility, which likely results from the training data they
used that is less druglike and hard to synthesize. This has been
shown as one of the key factors to influence the synthesizability
of generated molecules.””

Bl DATA AND SOFTWARE AVAILABILITY

We have listed the code accessibility of each method reviewed
in Table S2 and have provided links, but we make no
guarantees to their functionalities. Where accessible links are
absent, we encourage readers to contact the original authors
for more information about the software and how to access it.
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